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Correspondence

Theory of Unidirectionality and
Conjugate Matching in Three-Port
Time-Varying Reactance Circuits

Abstract—1In recent years interest has been
shown in parametric circuits having special
properties such as unidirectionality and conju-
gate matching. This correspondence discusses
the properties of a particular class of such cir-
cuits; viz., those which may be regarded as a
three-port time-varying reactance circuit termi-
nated by complex impedances. The theory is
presented in terms of characteristic termina-
tions, to which constraints imposed by the
Manley-Rowe relations are applied. Applica-
tions of the theory include the synthesis of a
three-port time-varying reactance circulator
and of unidirectional and conjugately matched
amplifiers.

1. INTRODUCTION

In recent years a certain amount of interest
has been shown in parametric circuits having
special properties such as unidirectionality
and conjugate matching with high gain [1]-
[9]. Such circuits would eliminate the need for
the ferrite circulators and isolators presently
used in parametric amplifying devices. Many
of these special circuits may be regarded as
three-port time-varying reactance circuits
terminated by resistive or complex imped-
ances. A typical example might be a four-
frequency parametric up-converter, where the
three ports are the signal input port, the
upper-sideband output port, and the lower-
sideband or idler port, the termination of
which controls the regeneration. Although
the time-varying circuit may take various
forms (e.g., combinations of pumped induc-
tance and capacitance, two-diode circuits, or
single-diode double-pumped circuits) a great
deal can be deduced from the fact that the ele-
ments used obey the Manley-Rowe power
relations. The purpose of this correspondence
is to discuss the properties of general three-
port time-varying reactance circuits, and to
show how the frequencies of the ports may
be chosen to fulfill special requirements.

II. THEORY
A. The Manley-Rowe Constraint

We shall assume that the variation of the
time-varying elements is periodic, but not
necessarily sinusoidal, and that the frequen-
cies of the ports are first-order sidebands of
the pump frequency or its harmonics. Treat-
ing the frequencies of lower sidebands (that is,
inverted sidebands) as negative, the angular
frequency of each of the three ports can be
written in the form w,+nw,, where » is a posi-
tive or negative integer and w, the fundamen-
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tal pump angular frequency. Under these con-
ditions it follows from the Manley-Rowe rela-
tions [10] that
3

>3 power at wm -0 (1)

m=1 Wm
where the summation is taken over the three
signal ports, w,, being the angular frequency
of port m. This relation holds not only for
single time-varying reactances, but also for
combinations of fixed and time-varying reac-
tances.

An alternative way of expressing the Man-
ley-Rowe relations is in terms of the admit-
tance matrix of the network. If the network is
represented by the admittance matrix

I 1"] |" Yu Yie Y[V
Inj=1 Yy Yo Yza} Vzil (2)
I 3_| I_ Yau Yie YsllVs

it can be shown [11] that the Manley-Rowe
relations correspond to the constraint
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where Y., is purely imaginary. The asterisk
signifies complex conjugate.
It is convenient to write the matrix as
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so that the constraint becomes
Cnm = Cmn* (5)

where C,, is real. This method of writing
should not be taken to mean that the network
contains only capacitance; the C’s will in
general be frequency-dependent and will in-
clude the filters in the circuit.

B. Limitations of Two-Port Circuits

A two-port network may be regarded as a
special case of the three-port network, and is
represented by the admittance matrix equa-

tion
I1:| - [Yu sz:I I:V1:| ) ®)
I, Yu YellV.
In this connection, it should be noted that the
term port is not necessarily synonymous with
terminal-pair; if several frequency compo-
nents appear at a single terminal-pair, each is
treated as a separate port. Applying the re-
striction of (3) to (6) gives
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A two-port time-varying reactance circuit
thus cannot be unidirectional.

C. Characteristic Terminations of a Three-
Port Network

Before turning specifically to three-port
time-varying circuits, we will consider how a
general linear nonreciprocal three-port net-
work can be used to produce a unidirectional
device. The matrix equation of a three-port
network can be written as in (2).

If the ports are terminated with admit-
tances Y, Y., and Y3, and current sources
Lo, I, and I, applied as in Fig. 1, the new
matrix (Y’) becomes

1107
[zzo
Y14+ Y Y2 Yis
= Ya Y. + Y Yo ]
L Ya Ya Yi+4 Y
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L Vs

g K| |4 8

Y,

Lo

Fig. 1. Three-port network with terminations.

Inverting this gives

Ay A
Vi Au A21 1‘131 Lo
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where A, is the co-factor of Y,,’ in (8) and
A is the determinant. Assuming A0, the
condition for zero gain from port 2 to port 1
is

A 21 = O. (10)

This defines a value for ¥; which is indepen-
dent of Y, and Y3 and is given by

Y:;Y.
Y= — Yss+—;;£' 1)

12

Alternatively, for zero gain from port 1 to
port 2 we must put

Y23 Yﬂl

Ys= — Ya + Ym

. (12)
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Similar values can be defined for Y; and Y;
by cyclic permutation of (11) and (12). Thus
we can say that, with certain exceptions, each
port of a three-port network has two charac-
teristic terminating admittances which make
the device unidirectional between the other
two ports. To distinguish between them, we
shall refer to them as cyclic or anticyclic, ac-
cording to the direction of the nonzero gain.

D. Exceptions

a) Degenerate case: If the two charac-
teristic terminations of a port coincide, we
cannot make the reverse gain zero without at
the same time making the forward gain zero.
Under these conditions, the device cannot be
made unidirectional. An example is a recipro-
cal three-port network, but degenerate three
ports need not necessarily be reciprocal. The
condition for degeneracy is, from (11) and
(12),

Y1:YsYa1 = Y13V Vo1, 13)

This is symmetrical in 1, 2, and 3, and there-
fore if one port of the device is degenerate, all
ports are degenerate.

b) Critical stability (A=0): Characteristic
termination of a port may, depending on the
terminations of the other two ports, cause the
device to become critically stable instead of
unidirectional. This is of particular impor-
tance when we wish to terminate more than
one port characteristically. Suppose we termi-
nate port 1 cyclically and port 2 anticyclically.
Then we have

Ase = As1 = 0. (14)

From this it can be shown that Aj; is also
zero and hence

A= 0. (15)

Thus termination of one port with its cyclic
characteristic admittance and a second port
with its anticyclic characteristic admittance
produces critical stability.

E. The Characteristic Terminations of a Three-
Port Time-Varying Reactance Circuit

The admittance matrix of a three-port
time-varying reactance circuit may be written
as in (4). Substituting from this matrix in (11)
and (12) gives the characteristic terminating
admittances of port 3

jeraC'13C!
Ysa(cyelic) = — jwiCs L T
Cha
joaCl2sC!
Ya(anticyelic) = — jwiCss -I-Jg%i—si Can
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Thus, since Cy, and C,, are complex conju-
gates,

Y:(eyclic) = — Yg*(anticyclic) (18)

and similarly for the other two ports. Thus the
two characteristic terminations of a port have
equal imaginary parts and equal and opposite
real parts. Consequently only one can be pas-
sive. The condition for degeneracy is, from
13),

C12093Cs1 = C13C32C 0,
ie.,

012023031 = 631*023*012*- (19)

Hence C,3,C5:Csy is real or zero. An example
of a degenerate circuit would be a multi-
element circuit in which all the elements are
pumped in phase, as it is then possible to
choose the time origin such that all C,.. are
real.

F, Active and Passive Characteristic Termi-
nations

The phase angle of C15Cs2/Cys in (16) is
the same as that of C13C33Cs1. Hence the real
part of Ys (cyclic) has the same sign as
—ws Im C13C53Cy, which is the same as the
sign of ws Im C15C23Cs:. This depends on the
sign of ws, i.¢., on whether «; is a noninverted
or an inverted sideband. Since C1.C33Car is
symmetrical in 1, 2, and 3, it is independent of
the port we are considering. Thus if

Im C1:C95Cs > 0 (20

the cyclic terminations of positive-frequency
ports and the anticyclic terminations of nega-
tive-frequency ports are the passive ones. If

Im C15C23Ca < 0 (21)
the reverse is true.

G. Conjugate Maiching

A point of interest is that, if two ports are
terminated either both with their cyclic or
both with their anticyclic characteristic termi-
nations, they will be conjugately matched,
irrespective of the third termination. This can
be seen as follows. We have already noted in
Section II-D that if one port is terminated
cyclically and a second port terminated anti-
cyclically, critical stability results. Under this
condition, the terminating admittance at each
of the two ports is equal and opposite to the
input admittance at that port. If we now
replace the anticyclic termination by the cor-
responding cyclic termination, this merely
involves changing the sign of the real part.
The port is thus now conjugately matched. By
a similar argument, the other port is also con-
jugately matched. Similarly, two anticyclic
characteristic terminations are conjugately
matched.

III. APPLICATION OF THE THEORY TO THE
DESIGN OF UNIDIRECTIONAL AND CON-
JUGATELY MATCHED DEVICES

For convenience, we will summarize the
main results of the foregoing theory.

1) Each port of a general linear three-port
network has in general two characteristic ter-
minations which make the network unidirec-
tional between the other two ports. They are
designated cyclic or anticyclic according to the
direction of the nonzero gain.

2) In a degenerate three-port network the
two characteristic terminations of each port
are equal.

3) Cyclic termination of one port of a
three-port network and anticyclic termina-
tion of a second port produces critical sta-
bility.

4) In a time-varying reactance three-port
network, the two characteristic terminations
of a port have equal imaginary parts and
equal and opposite real parts. Hence, only one
is passive.

5) In a time-varying reactance three-port
network, the passive characteristic termina-
tions are either a) the cyclic ones at positive-
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frequency ports and the anticyclic ones at
negative-frequency ports, or b) vice versa.

6) In a time-varying reactance three-port
network, two ports terminated either both
cyclically or both anticyclically are conju-
gately matched.

In applying the theory, we shall first de-
cide which of the two characteristic termina-
tions of a port is to be used, and then decide
whether a positive or negative frequency must
be specified for that port to make the required
termination passive. The only restrictions on
the time-varying circuit itself are that it must
not be degenerate and that Im Ci:CasCan
must have the correct sign.

A. Time-Varying Reactance Three-Port Circu-
lator

The circulator [2], [4] [Fig. 2(a)] is re-
quired to transmit energy from port 1 to 2,
2 to 3, and 3 to 1, and to have zero transmis-
sion in the reverse direction. Three cyclic
characteristic terminations are therefore re-
quired, and for these to be passive the fre-
quencies of the ports must be all positive or
all negative (which amounts to the same
thing). Defining the frequencies as positive,
we have the matrix constraint for the clock-
wise circulator

Im C12C23Cs > 0. (22)

The circulator will automatically be conju-
gately matched. The three frequencies may be
different or, if a suitable circuit configuration
is adopted, the same. In the latter case the
device becomes exactly equivalent to a con-
ventional ferrite circulator. The power gain
from port 1 to port 7 is wm/w.. This follows
directly from the Manley-Rowe relations,
since no energy emerges at the third port.

B. Two-Port Amplifiers

Desirable properties of an amplifying de-
vice are: 1) conjugate matching at the input,
2) conjugate matching at the output, 3) uni-
directionality, and 4) high gain, which in the
context will be taken to mean arbitrarily high
gain, ie., the device may approach insta-
bility. Unfortunately, all four of these are not
achievable simultaneously using a three-port
time-varying reactance circuit.

a) Unidirectional conjugately matched up-
converter. The time-varying reactance three-
port circulator can also be used as a unidirec-
tional conjugately matched upconverter by
taking for example port 1 as the input and
port 2 as the output. The forward power gain
will be the same as for a simple upper-side-
band converter, i.e., wa2/w1.

b) Unidirectional high-gain converter with
conjugately matched input [8] [Fig. 2(b)]. To
obtain zero reverse gain we must terminate
port 3 cyclically. To obtain a conjugate match
at the input we must therefore also terminate
port 1 cyclically. For passive terminations, fre-
quencies w; and w; must thus have the same
sign, which we will take as positive. The con-
dition for high gain, since we have already
terminated two ports cyclically, is that termi-
nation 2 must tend to its anticyclic value. For
termination 2 to be passive, therefore, w» must
be negative. The output conductance will of
course be negative. The matrix constraint is
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Im C1:C2sCn1 > 0. (23) d) Conjugately matched high-gain con-
verter [I1, (81, [9] [Fig. 2(d)]. To obtain a
conjugate match at both input and output,
we terminate ports 1 and 2 with their anti-
cyclic characteristic terminations. Frequen-
cies w; and w; must therefore both have the
same sign, which we will take as positive. High
gain can now be achieved by letting termina-
tion 3 tend to its cyclic value, and for this to
Im?C5C2:Cs > 0. (24)  be passive w; must be negative. The gain can
be controlled by varying Y without destroy-
ing the conjugate matches at the other two
ports. The reverse power gain, which is inde-
pendent of Y3, is the Manley-Rowe gain
C —C w1/ws, since there is no power flow from port
2 to port 3. The matrix constraint is

3 ‘ Im 012023031 < 0. (25)

¢) Unidirectional high-gain converter with
conjugately matched output [Fig. 2(c)]. This is
designed similarly to the circuit of Fig. 2(b).
Port 3 is terminated cyclically for unidirec-
tionality, port 2 also cyclically to give a con-
jugate match, and port 1 anticyclically for
high gain. The matrix constraint is

N

@ It will be seen that applications b), c),
and d) are essentially the same circuit with the
ports numbered differently.

IN ouT

1IV. PrAcCTICAL EXAMPLE

As an illustration we will show how the

theory may be applied to a circuit described by

3] Adams [1], which is a conjugately matched

high-gain upconverter [application in Section

) I11-B-d]. The circuit (Fig. 3) consists of a time-

varying capacitance C(r) in series with three

N ouT parallel resonant filters tuned to the input

frequency w1, the output frequency we, which

is the upper sideband w;+w,, and the idler fre-

C quency ws, which is the lower sideband c; — .

In the analysis the filters are assumed to be

open circuit at their resonant frequencies and

short circuit at all other frequencies, so that

the voltage across the diode is made up only

© of the three components Vi, V2, and V3, hav-

ing frequencies wi, ws, and ws, respectively. The

IN ouTt admittance matrix of the network is obtained

by the usual procedure [12], and can be shown
! 2 A to be

Il_l jrCe  joiCr* jw\Cf‘
‘ 3 Iz = ]w 201 jwaCo jw202
~C IsJ JwsCi* jwsCo* ngCo_l

@ Vx“
Fig. 2. Applications of the theory. (a) Circulator. Ay, (26)
(b) Unidirectional high-gain converter with conju- J
gately matched input. (¢) Unidirectional high-gain Vs
converter with conjugately matched output. (d) Con-

jugately matched high-gain converter. C denotes a
cyclic characteristic termination, 4 an anticyclic where Cy, Ci, and C; are components of C(7)

"

characteristic termination. defined by the relation
c®
o Il L o
I "l
INPUT \/' h OUTPUT
Wy

Wo = W+ (,\)P

Vs
IDLER
Wi = w,— Wy

Fig. 3. Circuit of conjugately matched high-gain converter.

Ct) = - - - Cy*e2wpt 4 Cy¥e=ivnt 4 Cy
+ Cigopt - Cogtiont -+ - ., (27)

The elements of this matrix can now be
substituted in the general matrix of (4). The
characteristic terminations are then obtained
from (16) and (17) and their cyclic permuta-
tions, giving

: *y2
Y:(anticyclic) = — jw,Cy + ]w—lé,(j,:—) (28)
OO
Ya(anticyclic) = — jwiClo +szg—112 (29)
jwsCyCo*
Ya(eyelic) = — jsCo +]—°°“Cl‘—*2- (30)

In practice the reactive parts of these admit-
tances may be obtained by off-tuning the fil-
ters. The condition for the above terminations
to be passive is, from (25),

Im (Ci*)%C: < 0. 31)

Thus, both C, and C, must be nonzero.
The same circuit, with the same termina-
tions, may also be used as a unidirectional
high-gain converter with conjugately matched
input by taking port 1 as the input, port 3 as
the output, and port 2 as the idler port. Alter-
natively, a unidirectional high-gain converter
with conjugately matched output results if we
take port 3 as the input, port 2 as the output,
and port 1 as the idler port. If inequality (31)
were reversed, it would be possible to termi-
nate ports 1 and 2 cyclically and port 3 anti-
cyclically. The device would then act as a
conjugately matched high-gain downconvert-
er with input at port 2 and output at port 1.
A. E. FanTOM
Dept. of Electronic and Elec. Engrg.
University of Birmingham
Birmingham, England
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